首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2103篇
  免费   137篇
  2021年   16篇
  2020年   17篇
  2019年   18篇
  2018年   21篇
  2017年   19篇
  2016年   30篇
  2015年   50篇
  2014年   61篇
  2013年   144篇
  2012年   97篇
  2011年   99篇
  2010年   56篇
  2009年   49篇
  2008年   97篇
  2007年   90篇
  2006年   101篇
  2005年   93篇
  2004年   113篇
  2003年   100篇
  2002年   108篇
  2001年   74篇
  2000年   83篇
  1999年   63篇
  1998年   32篇
  1997年   24篇
  1996年   24篇
  1995年   28篇
  1994年   14篇
  1993年   19篇
  1992年   59篇
  1991年   44篇
  1990年   35篇
  1989年   49篇
  1988年   30篇
  1987年   26篇
  1986年   25篇
  1985年   39篇
  1984年   20篇
  1983年   19篇
  1982年   13篇
  1981年   16篇
  1980年   8篇
  1979年   13篇
  1978年   7篇
  1977年   12篇
  1976年   9篇
  1975年   15篇
  1974年   6篇
  1973年   12篇
  1968年   6篇
排序方式: 共有2240条查询结果,搜索用时 15 毫秒
71.
72.
S Oda  C Oriol-Audit  E Reisler 《Biochemistry》1980,19(24):5614-5618
Experiments have been carried out to assess the involvement of the myosin light chains [obtained by treatment of myosin with 5,5'-dithiobis(2-nitrobenzoic acid) (Nbs2)] in the control of cross-bridge movement and actomyosin interactions. Chymotryptic digestions of myosin, actomyosin, and myofibrils do not detect any Ca2+-induced change in the subfragment 2 region of myosin. Actin, like Ca2+, protects the in situ Nbs2 light chains from proteolysis and causes a partial switch in the digestion product of myosin from subfragment 1 to heavy meromyosin. This effect is independent of the state of aggregation of myosin, and it persists in acto heavy meromyosin and in actinomyosin in 0.6 M NaCl. Digestions and sedimentation studies indicate that there is no direct acto light chain interaction. Proteolysis of myosin shows a gradual transition from production of heavy meromyosin to subfragment 1 with lowering of the salt level. In the presence of Ca2+ heavy meromyosin is generated both in digestions of polymeric and of monomeric myosin. These results are explained in terms of localized changes within the Nbs2 light chains and subfragment 1. Subunit interactions in the myosin head lead to a Ca2+-induced reduction in the affinity of heavy meromyosin for actin in the presence of MgATP. The resulting Ca2+ inhibition of the actin-activated ATPase of myosin can be detected at high salt concentrations(75 mM KCl).  相似文献   
73.
74.
A human monoclonal macroglobulin (IgM, K) from a patient (KI) with Waldenstr?m's macroglobulinemia was shown to have antibody activity against a human IgG (Gm) allotype. In hemagglutination tests, only one anti-D serum with G3m(b0b1) reacted with macroglobulin KI. Antiglobulin specificity of macroglobulin KI was determined to be an anti-G3m(b1) antibody by hemagglutination inhibition tests. Fab fragments from macroglobulin KI could react with human IgG3 protein possessing G3m(b1), but Fc fragments could not react. Gm phenotype in IgG isolated from serum KI was determined to be Gm(a,z,g,b0,s,t,u). This is the first report of a Waldenstr?m's macroglobulin with antiglobulin specificity against a Gm allotype.  相似文献   
75.
Tissue inhibitor of metalloproteinases (TIMP, a specific inhibitor of collagenase) was found to inhibit thyroid hormone-induced tail regression, suggesting the important role of collagenase in this process. Collagenase was purified from culture media of back skin of tadpole of bullfrog, Rana catesbeiana . Anti-tadpole collagenase polyclonal antisera were obtained against the purified enzyme. The antibody inhibited the activity of tadpole collagenase. The antisera reacted to tissues of adult bullfrogs, tadpoles of african clawed frog, Xenopus laevis , and adult newts, Cynopus pyrrhogaster , and also reacted to human fibroblast collagenase. Immunoblot analyses suggested that tadpole collagenase lacks the procollagenase which is generally found in mammalian collagenases. Intense immunological stains were observed for the tissues of thyroid hormone-treated tadpoles as compared to those of untreated animals. Thyroid hormone increased amounts of collagenase not only in epidermal layer but also in mesenchymal tissues including fibroblastic cells.  相似文献   
76.
77.
The size of the cavity around Ser68 of Escherichia coli ribonuclease HI was modulated by amino acid substitutions to examine the effects on the stability of the enzyme. Five mutant proteins, Ser68----Gly, Ser68----Ala, Ser68----Thr, Ser68----Val and Ser68----Leu, were constructed. Each of the mutant proteins exhibited at least 40% of the enzyme activity of the wild-type protein. The stabilities of the mutant proteins were determined from urea-denaturation and thermal-denaturation curves. Among the five mutations, only the Ser----Val mutation resulted in an increase in the stability of the enzyme. The melting temperature, tm, at pH 3.0 of the mutant protein Ser68----Val was increased by 1.9 degrees C. Its free-energy change of unfolding in the absence of urea, delta G(H2O), and the midpoint of the denaturation curve, [D]1/2, were also increased by 5.4 kJ/mol and 0.18 M, respectively. The increase in the stability of the enzyme is probably due to the filling of the cavity space around Ser68 by valine. However, the mutation of Ser68 to glycine or leucine residues resulted in a considerable decrease in stability. In these cases, some conformational changes occur, as suggested by the CD and 1H-NMR spectra of these mutant proteins.  相似文献   
78.
The mechanism of induction of DNA synthesis in quiescent rat 3Y1 cells by the adenovirus E1A gene was investigated using the 3Y1 derivative cell lines g12-21, gn12RB1, and gn12RB2. The g12-21 cells express the E1A 12S cDNA and the latter two cells express both the E1A 12S cDNA and the human retinoblastoma susceptibility (Rb) gene at different levels in response to dexamethasone (dex). The cDNA sequences of E1A-inducible cell cycle-dependent genes, clone 3 and clone 16, were isolated by differential screening of a cDNA library constructed from dex-treated g12-21 cells. The quiescent 3Y1 cells induced c-fos and c-myc expression within 2 h after serum stimulation and expressed clone 16 and clone 3 transiently at around 8 h before the onset of DNA synthesis (10 h). In contrast, the quiescent g12-21 cells treated with dex expressed a high level of E1A at 6 to 8 h after treatment and expressed clone 16 and clone 3 at around 8 h without stimulation of c-fos and c-myc expression, suggesting that E1A bypasses the cell cycle early in G1. The half-maximal rate of DNA synthesis was reached in a much shorter time in dex-treated g12-21 cells (12 h) than in serum-treated 3Y1 cells (18 h), suggesting that E1A also bypasses the cell cycle at the G1/S boundary. The gn12RB1 and gn12RB2 cells were unable to induce DNA synthesis in response to dex presumably due to lower levels of E1A expression, although gn12RB2 but not gn12RB1 cells could express clone 16 and clone 3. These results suggest that the level of E1A required for bypass at the G1/S boundary is higher than that required early in G1.  相似文献   
79.
Protein-tyrosine phosphorylation during platelet activation is inhibited under conditions that inhibit platelet binding of fibrinogen and aggregation. We suggested that pp60src, a major platelet tyrosine kinase, or its protein substrates might become associated with the cytoskeleton upon platelet stimulation, and that this might be related to aggregation. By Western blotting with an anti-Src monoclonal antibody, we found time-dependent association of pp60src with the cytoskeleton (10,000 x g Triton X-100-insoluble matrix) but not the "membrane" cytoskeleton (100,000 x g Triton X-100-insoluble matrix) in platelets activated by U46619 (PGH2 analog). Cytoskeletal association and platelet aggregation were inhibited by the peptide Arg-Gly-Asp-Ser (RGDS) (but not by Arg-Gly-Glu-Ser (RGES)), by 10E5 antibody against glycoprotein (Gp) IIb/IIIa, and by EGTA. U46619-induced association of pp60src with cytoskeleton but not secretion or aggregation was inhibited by cytochalasin D (2 microM). Both cytochalasin D and RGDS inhibited "slow" tyrosine phosphorylation of platelet proteins. Association of pp60src with cytoskeleton induced by U46619 or ADP was not blocked by aspirin. Aspirin blocked epinephrine-induced association of pp60src with the cytoskeleton during a second phase of aggregation when an initial phase had occurred without shape change or secretion. Association of GpIIb/IIIa with the cytoskeleton also accompanied platelet aggregation, shape change, and actin polymerization; this was shown with anti-GpIIb and anti-GpIIIa antibodies. Association of pp60src and GpIIb/IIIa with the cytoskeleton and slow tyrosine phosphorylation are related phenomena.  相似文献   
80.
Analysis of the mitochondrial DNA of a liverwort Marchantia polymorpha by electron microscopy and restriction endonuclease mapping indicated that the liverwort mitochondrial genome was a single circular molecule of about 184,400 base-pairs. We have determined the complete sequence of the liverwort mitochondrial DNA and detected 94 possible genes in the sequence of 186,608 base-pairs. These included genes for three species of ribosomal RNA, 29 genes for 27 species of transfer RNA and 30 open reading frames (ORFs) for functionally known proteins (16 ribosomal proteins, 3 subunits of H(+)-ATPase, 3 subunits of cytochrome c oxidase, apocytochrome b protein and 7 subunits of NADH ubiquinone oxidoreductase). Three ORFs showed similarity to ORFs of unknown function in the mitochondrial genomes of other organisms. Furthermore, 29 ORFs were predicted as possible genes by using the index of G + C content in first, second and third letters of codons (42.0 +/- 10.9%, 37.0 +/- 13.2% and 26.4 +/- 9.4%, respectively) obtained from the codon usages of identified liverwort genes. To date, 32 introns belonging to either group I or group II intron have been found in the coding regions of 17 genes including ribosomal RNA genes (rrn18 and rrn26), a transfer RNA gene (trnS) and a pseudogene (psi nad7). RNA editing was apparently lacking in liverwort mitochondria since the nucleotide sequences of the liverwort mitochondrial DNA were well-conserved at the DNA level.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号